Analyses on Energy Resiliency and Efficiency

Presenter: Benjamin F. Hobbs Schad Professor of Environmental Management, JHU Director, EPICS NSF Global Center Chair, CAISO Market Surveillance Committee

Yury Dvorkin Associate Professor of Civil & Systems Engineering and Electrical & Computer Engineering, JHU US Director, EPICS

> Mahdi Mehrtash Assistant Research Professor, JHU

Ralph O'Connor Sustainable Energy Institute Johns Hopkins University

Authors are solely responsible for any opinions or errors

OHNS HOPKINS WHITING SCHOOL of ENGINEERING

Analysis of Energy Resiliency and Efficiency

• Goal:

- Provide analyses to support the mission of the Energy Resiliency & Efficiency WG of the Maryland CCC
 - WG's mission: "Advise the commission on issues and opportunities related to energy infrastructure improvements, transmission efficiency improvement, and battery backup viability"
- Identify solutions to improve resiliency of Maryland's electric infrastructure
- Advise Commission on issues and opportunities related to energy infrastructure improvements

• Team at Hopkins:

- Ben Hobbs (<u>bhobbs@jhu.edu</u>), Yury Dvorkin (<u>ydvorki1@jhu.edu</u>)
- Students: Ziting Huang, Stephanie Wilcox, Boyu Yao
- HOPE-MD team: Mahdi Mehrtash, Shen Wang, Zoe Song

Energy at **Hopkins**

ROSEI Research Pillars and Power Grid Research

Energyat Hopkins

Project Goal & Tools

- Goal: Analyze battery storage capacity needed for resilient & efficient grid operations in Maryland
 - Resiliency benefits
 - Locational & temporal value
 - Identify existing power plant sites for effective deployment
 - Simulation-based system-wide impacts & recommendations
- Holistic Optimization Program for Electricity in Maryland (HOPE-MD) is a configurable & modularized tool
 - Explore cost, emissions, & technology implications of power sector transition strategies
 - Modes of use:
 - **PCM** mode: *production costing* of user-provided investment scenarios
 - **GTEP** mode: gen & transmission *expansion* optimization
- HOPE-MD targets State-level Carbon & RPS policies that support transition paths for the electric power sector

Energy at **Hopkins**

HOLISTIC OPTMIZATION PROGRAM FOR ELECTRICITY

Support to Energy Efficiency & Resilience WG

- What questions do you have about the role of storage & its effects on system performance?
- Example questions about criteria & technology characterizations:
 - What dimensions of *resiliency* that should be prioritized?
 - What **storage characteristics** should be prioritized?
 - What *cost factors* should be carefully modelled?
- Example questions about scenarios:
 - Plausible trajectories for load & renewable growth over the years?
 - Timing & amounts of retirements?
 - What are "known unknowns" and "unknown unknowns"?
- Any input is welcome

Energy at **Hopkins**

